
MEV

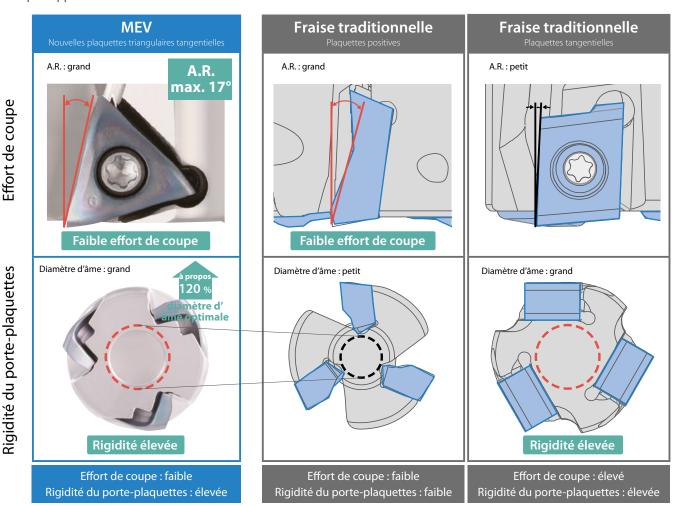
Fraises multifonctions hautes performances

Les nouvelles plaquettes triangulaires offrent de nombreuses solutions

Hautes performances : faibles efforts de coupe et plus grande rigidité pour une réduction substantielle du broutage

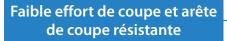
Fraisage hautes performances

MEV


Nouvelles plaquettes triangulaires offrant un faible effort de coupe et une plus grande rigidité du porte-plaquettes. Solutions de fraisage multifonctions hautes performances et économiques.

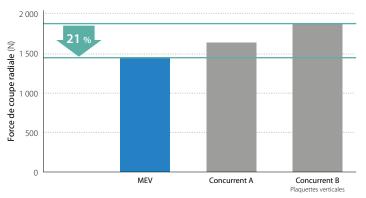
Hautes performances : faible effort de coupe et rigidité élevée

Les nouvelles plaquettes triangulaires tangentielles avec 3 arêtes de coupe assurent un usinage stable et une réduction du broutage.


MEV par rapport à la concurrence

Le grand angle de coupe du modèle MEV réduit les efforts de coupe et les plaquettes triangulaires tangentielles offrent une plus grande rigidité.

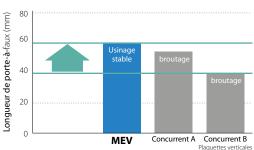
Les excellentes performances des plaquettes triangulaires multi-usages du modèle MEV combinent les avantages des plaquettes classiques positives et négatives.



Diamètre d'âme à rigidité élevée

Le maintien de l'angle de coupe vers l'arrière (A.R.) à 17° maximum réduit l'effort de coupe par rapport aux plaquettes positives de la concurrence

Comparaison des efforts de coupe (évaluation interne)


Conditions de coupe : Vc = 200 m/min, ap \times ae = $3 \times 18 \text{ mm}$, fz = 0,10 mm/t, ø20 (3 plaquettes), à sec, pièce : 42CrMo4

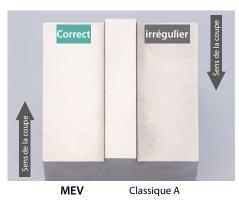
Excellente résistance au broutage grâce au faible effort de coupe et à un diamètre d'âme optimale

Comparaison de la résistance au broutage (évaluation interne)

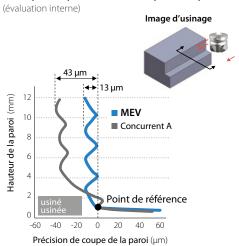
Usinage d'épaulement

 $Conditions \ de \ coupe: \ Vc = 200 \ m/min, \ ap \times ae = 3 \times 18 \ mm, \ fz = 0,10 \ mm/t, \ \varnothing 20 \ (3 \ plaquette), \ a \ sec, \ pièce: 42 \ crMo4$

Rainurage



Conditions de coupe : Vc = 220 m/min, ap = 3 mm (rainurage), fz = 0,10 mm/t, ø20 (3 plaquettes), à sec, pièce : 42CrMo4


Offre un excellent état de surface et une plus grande précision de coupe sur la paroi

Comparaison de l'état de surface (évaluation interne)

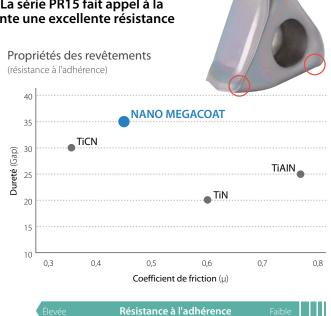
Conditions de coupe : Vc = 180 m/min, ap \times ae $= 3 \times 40$ mm fz = 0,1 mm/t, ø50 (5 plaquettes), à sec, pièce : C50

Exemple de précision de coupe de la paroi

Conditions de coupe : Vc = 200 m/min, ap \times ae = 3×10 mm (4 passes) fz = 0,15 mm/t, ϕ 50 (5 plaquettes), à sec, pièce : C50

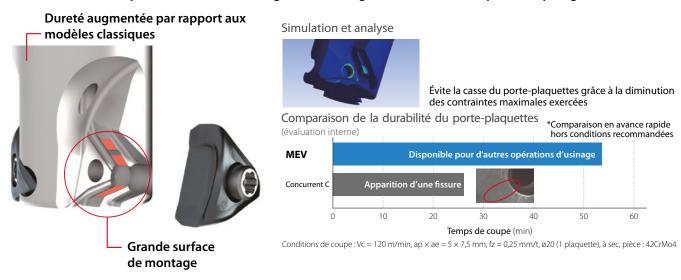
*La précision de la surface de la paroi varie en fonction des conditions de coupe, de l'environnement d'usinage et de la combinaison de plaquettes.

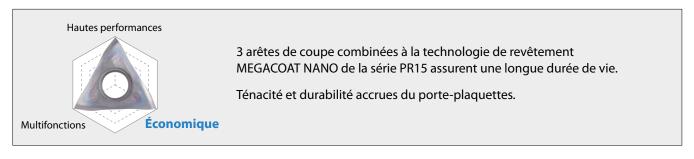
Le choix économique : plaquette à 3 arêtes de coupe avec une longue durée de vie


Plaquette

Plaquettes triangulaires uniques avec 3 arêtes de coupe. La série PR15 fait appel à la technologie de revêtement MEGACOAT NANO, qui présente une excellente résistance à l'usure et à l'adhérence.

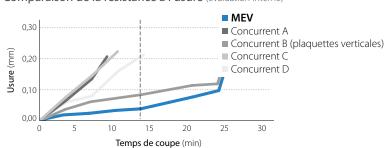
Propriétés des revêtements (résistance à l'abrasion)


Longue durée de vie garantie grâce à la combinaison d'un substrat résistant et d'un revêtement nano spécial



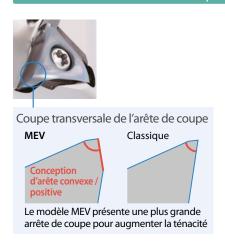
Usinage stable avec excellente résistance à l'usure

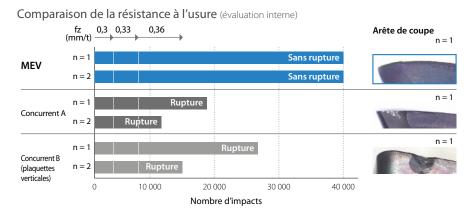
Porte-plaquettes


Doté d'une technologie de pointe en matière de simulation et d'analyse, le modèle MEV est conçu pour réduire les contraintes sur le corps de la fraise. Dureté augmentée et large surface de contact pour une plus grande durabilité.

Longue durée de vie et excellente résistance à l'usure

Comparaison de la résistance à l'usure (évaluation interne)


Arête de coupe (après usinage de 14 min)



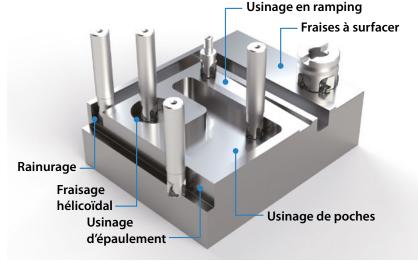
Après usinage de 10,5 min.

 $Conditions \ de \ coupe: Vc = 180 \ m/min, \ ap \times ae = 3 \times 10 \ mm, \ fz = 0.1 \ mm/t, \ \emptyset 20, \ \grave{a} \ sec, \ pi\grave{e}ce: X153CrMoV12 \ (30 \sim 35HS)$

Meilleure stabilité et résistance supérieure à la rupture

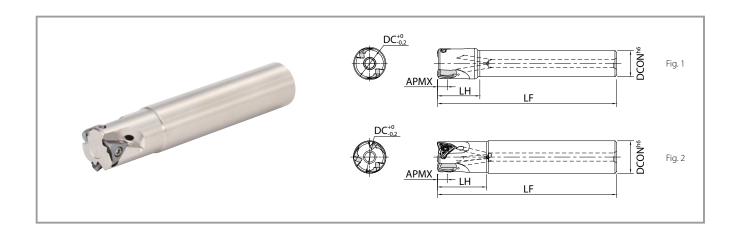
Conditions de coupe : Vc = 120 m/min, ap \times ae = 2×10 mm, fz = 0.3 - 0.36 mm/t, $\emptyset 20$ (1 plaquette), à sec, pièce : 42CrMo4 ($37 \sim 39$ HS)

3


Multifonctions : le modèle MEV peut effectuer une grande variété de processus d'usinage

Excellentes performances dans les applications d'usinage en ramping, d'épaulement et de rainurage (profondeur de coupe 6 mm max.)

Exemple de copeau (rainurage)

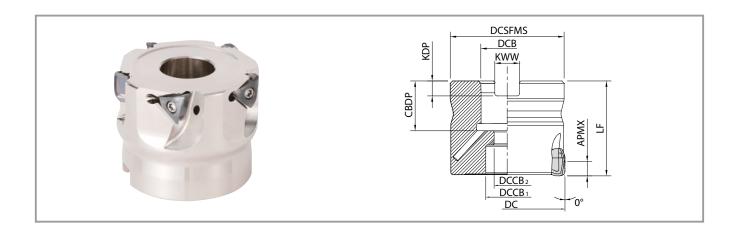

Conditions de coupe : Vc = 150 m/min, ap = 6 mm (rainurage) fz = 0,2 mm/t, ø20 (3 plaquettes), à sec, pièce : ST44-2

Bonne évacuation des copeaux avec une conception unique du brise-copeaux de la plaquette.

Usinage stable pour les applications telles que le rainurage et l'usinage en ramping, où les problèmes de recyclage des copeaux sont courants.

Dimensions du porte-plaquettes

					Nbre de		Dir	mensions (m	ım)		Angle de coupe po	sitif	Trou	Poids		Rotation max.
		Des	cription	Disponibilité	plaquettes	DC	DCON	LF	LH	APMX	Angle de coupe vers l'arrière (MAX.)	R.R.	d'arrosage	(kg)	Schéma	(min ⁻¹)
		MEV	20-S16-06-2T	•	2	20	16	110	26			-38°		0,2		32 000
			22-S20-06-3T	•		22	20	110	20			-37°]	0,2		29 000
	te)		25-S20-06-3T	•	3	25	20	120	29			-3/		0,3		25 000
	Standard (droite)		28-S25-06-3T	•] [28		120	29	6	+17°	-36°	Oui	0,4	Fig. 1	23 000
	ndard		30-S25-06-4T	•	4	30	25	130	32] "		-30	Oui	0,5	rig. i	21 500
	Sta		32-S25-06-4T	•] 4 [32		130	32			-36°]	0,5		20 000
			40-S32-06-5T	•	. 5	40	32	150	50			-30		1,0		16 000
ne			50-S32-06-5T	•]	50	32	120	40		+16°	-36°		0,9		13 000
Tige cylindrique		MEV	20-S20-06-2T	•	2	20	20	110	30			-38°		0,2		32 000
le cyli	an_		20-S20-06-3T	•	3	20	20	110	30			-36		0,2		32 000
Jij.	lentic		25-S25-06-2T	•	2	25	25	120	32	6	+17°	-37°	Oui	0,4	Fig. 2	25 000
	queue identique		25-S25-06-3T	•	3	23	25	120	32		Τ17	37	Jour	0,4	119.2	25 000
	пb		32-S32-06-3T	•		32	32	130	40			-36°		0,7		20 000
			32-S32-06-4T	•	4	JZ	32	150	70			30		0,7		20 000
	ngue	MEV	20-S18-06-150-2T	•		20	18	150	30			-38°		0.3	Fig. 1	32 000
	Queue série longue		20-S20-06-150-2T	•	2	20	20	130	40	6	+17°	30	Oui	0,3 Fig. 2		32 000
	ue séi		25-S25-06-170-2T	•]	25	25	170	50		'''	-37° Oui]		Fig. 2	25 000
	0ne		32-S32-06-200-2T	•		32	32	200	65			-36°		1,1		20 000

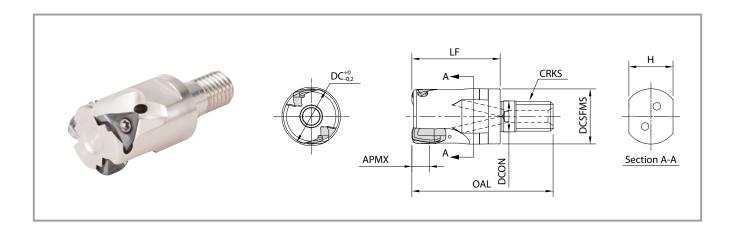

•: disponible

Pièces détachées et plaquettes à utiliser

			Piè	eces		Plaquette	s à utiliser	
	Description	Vis de serrage	Clé	Graisse antigrippage	Boulon de mandrin			
	νεχαιμασί					Usage général	Faible effort de coupe	
Fraises	MEV06T				-			
	MEV 032R-06-4T-M				HH8X25			
Fraises	040R-06-5T-M	SB-3076TRP	DTPM-10	P-37	пполдо			
	050R-06-5T-M				HH10X30	TOMT06GM	TOMT06SM	
	MEV 20-M10-06-2T	· ·	ole recommandé pour le se de la plaquette : 2,0 N ° m	-	_	TOWITOOGIWI	TOWITOOJWI	
Têtes modulaires	20-M10-06-3T	<u> </u>	de la piaquette . 2,0 N III		_			
ietes inodulaires	25-M12-06-3T				_	7		
	32-M16-06-4T				_			

Attention: rotation max.

Lors du fonctionnement de la fraise à la vitesse de rotation maximale, la plaquette ou la fraise risque d'être endommagée par la force centrifuge. Appliquer une fine couche de graisse antigrippage sur le filet avant le montage.

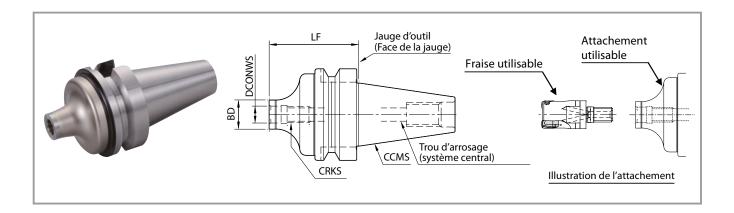


Dimensions du porte-plaquettes

			Nbre de					Dimension	ns (mm)					Angle de coupe positif		Trou	Poids	Rotation max.
Description		Disponibilité	plaquettes	DC	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	A.R. (MAX.)	R.R.	d'arrosage		(min ⁻¹)
MEV	032R-06-4T-M	•	4	32	30	16	13,5	0	35	19	5.6	8.4		+17°			0,1	20 000
	040R-06-5T-M	•	5	40	38	10	15	,	40	17	5,6	0,4	6	T17	-36°	Oui	0,2	16 000
	050R-06-5T-M	•	5	50	48	22	18	11	40	21	6,3	10,4		+16°			0,4	13 000

ullet : disponible

MEV (têtes modulaires)

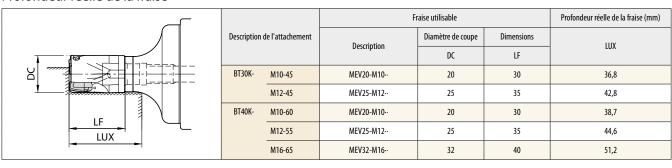


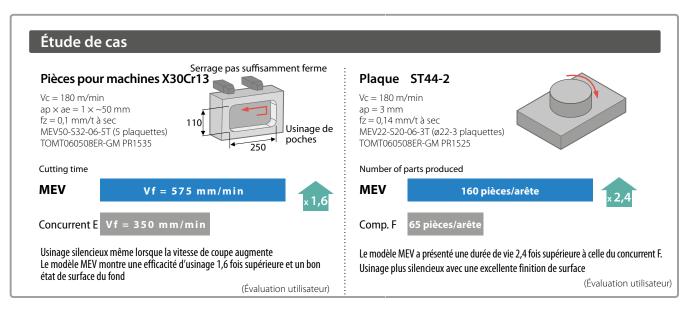
Dimensions du porte-plaquettes

			Nbre de				D	imensions (m	m)			Angle de co	oupe positif	Trou	Rotation max. (min ⁻¹)
	Description	Disponibilité	plaquettes	DC	DCSFMS	DCON	OAL	LF	CRKS	Н	APMX	A.R. (MAX.)	R.R.	d'arrosage	
MEV	20-M10-06-2T	•	2	20	18,7	10,5	48	30	M10×P1,5	15			-38°		32 000
	20-M10-06-3T	•	,	20	10,7	10,5	40	30	MIIUAFI,3	15		+17°	-36	Oui	32 000
	25-M12-06-3T	•] , [25	23	12,5	56	35	M12×P1,75	19	0	+17	-37°	Oui	25 000
	32-M16-06-4T	•	4	32	30	17	62	40	M16×P2,0	24			-36°		20 000

•: disponible

Mandrin BT pour tête interchangeable / broche de serrage à double face

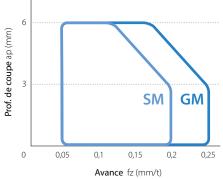



Dimensions

			Dimensio	ons (mm)			Mandrin (broche de serrage à double face)		
Descri	iption	Disponibilité	LF	BD	DCONWS	CRKS	Trou d'arrosage	CCMS	Fraise utilisable
BT30K-	M10-45	•	45	18,7	10,5	M10×P1,5	Oui	BT30	MEV20-M10
	M12-45	•	45	23	12,5	M12×P1,75	Oui	0130	MEV25-M12
BT40K-	M10-60	•	60	18,7	10,5	M10×P1,5			MEV20-M10
	M12-55	•	55	23	12,5	M12×P1,75	Oui	BT40	MEV25-M12
	M16-65	•	65	30	17	M16×P2,0			MEV32-M16

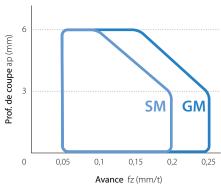
: disponible

Profondeur réelle de la fraise



	Classification	Р	Acier au carbo	ne • Acier allié			*	☆	
	Classification	r	Acier de matri	ce			*	☆	
			Acier inoxyda	ole austénitique			☆	*	
		М	Acier inoxyda	ole martensitiqu	e			☆	*
	★ : ébauche / 1er choix		Acier inoxyda	ble à durcisseme	nt par précipita	tion		*	
	☆: ébauche / 2e choix	V	Fonte grise				☆		
	: finition / 1er choix	K	Fonte à graph	ite sphéroïdal			☆		
	: finition / 2e choix	N Matériau non ferreux							
	Si la dureté est inférieure à 45 HRC	S	réfractaire					☆	*
		3	Alliage de tita	ne				*	
		Н	Matériaux tre	mpés					
				MEGA NA		Revêtement CVD			
Plaquette	Description	IC	S	D1	BS	RE	PR1525	PR1535	CA6535
Usage général	TOMT 060508ER-GM	7,2	5,7	3,4	1,5	0,8	•	•	•
Faible effort de coupe	TOMT 060508ER-SM	7,2	5,7	3,4	1,5	0,8	•	•	•

•: disponible


Gamme de brise-copeaux recommandée

Usinage d'épaulement

Conditions de coupe : Vc = 150 m/min, ae = DC/2 mm, pièce : C50

Rainurage

Conditions de coupe : Vc = 150 m/min, ae = DC mm, pièce : C50

×			Nuance de pla	quette recommandée (vitesse de coup	pe Vc : m/min)
Brise-copeaux	Pièce	Avance (fz : mm/t)	NANO MI	EGACOAT	Revêtement CVD
Brise			PR1535	PR1525	CA6535
	Acier au carbone	0,08 - 0,15 - 0,25	120 − 180 − 250	★ 120 – 180 – 250	_
	Acier allié	0,08 - 0,15 - 0,2	100 − 160 − 220	★ 100 − 160 − 220	_
	Acier de matrice	0,08 - 0,12 - 0,2	80 − 140 − 180	★ 80 – 140 – 180	_
	Acier inoxydable austénitique	0,08 - 0,12 - 0,15	100 − 160 − 200	100 − 160 − 200	_
GM	Acier inoxydable martensitique	0,08 - 0,12 - 0,2	150 − 200 − 250	_	★ 180 – 240 – 300
divi	Acier inoxydable à durcissement par précipitation	0,08 - 0,12 - 0,2	★ 90 – 120 – 150	_	_
	Fonte grise	0,08 - 0,18 - 0,25	_	120 − 180 − 250	_
	Fonte à graphite sphéroïdal	0,08 - 0,15 - 0,2	_	100 − 150 − 200	_
	Alliage réfractaire à base de nickel	0,08 - 0,12 - 0,15	20 − 30 − 50	_	★ 20 − 30 − 50
	Alliage de titane	0,08 - 0,15 - 0,2	40 − 60 − 80	_	_
	Acier au carbone	0,08 - 0,15 - 0,2	120 − 180 − 250	★ 120 − 180 − 250	_
	Acier allié	0,08 - 0,12 - 0,18	100 − 160 − 220	★ 100 − 160 − 220	_
	Acier de matrice	0,08 - 0,1 - 0,15	80 − 140 − 180	★ 80 – 140 – 180	_
SM	Acier inoxydable austénitique	0,08 - 0,1 - 0,15	★ 100 – 160 – 200	100 − 160 − 200	_
JIVI	Acier inoxydable martensitique	0,08 - 0,1 - 0,15	150 – 200 – 250	_	★ 180 – 240 – 300
	Acier inoxydable à durcissement par précipitation	0,08 - 0,1 - 0,15	90 − 120 − 150	_	_
	Alliage réfractaire à base de nickel	0,08 - 0,1 - 0,12	20 − 30 − 50	_	★ 20 – 30 – 50
	Alliage de titane	0,08 - 0,12 - 0,15	★ 40 − 60 − 80	_	_

Les chiffres en **caractères gras** désignent les conditions de départ recommandées. Régler la vitesse de coupe et l'avance conformément aux conditions ci-dessus en fonction de la situation d'usinage réelle.

l'usinage avec arrosage est recommandée pour les alliages réfractaires à base de nickel et les alliages de titane.

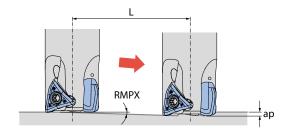
L'usinage avec arrosage est recommandée pour obtenir un bon état de surface.

Utilisable pour différents types d'usinage tels que l'usinage en ramping

Données de coupe pour l'usinage en ramping

Description	Dia. de la fraise DC (mm)	20	22	25	28	30	32	40	50
MEV06	Angle d'usinage oblique max. RMPX (°)	1,00	0,80	0,65	0,60	0,55	0,50	0,40	0,30
IVIEVU0	tan RMPX	0,017	0,014	0,011	0,010	0,010	0,009	0,007	0,005

Réduire l'angle de ramping si les copeaux sont trop longs


Conseils pour le ramping

L'angle ode ramping doit être inférieur à RMPX (angle oblique maximum) dans les conditions de coupe ci-dessus

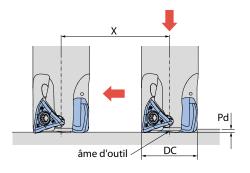
Réduire l'avance recommandée dans les conditions de coupe inférieures à 70 %

Formule pour longueur (L) de coupe max. Longueur (L) au max de l'angle ramping.

$$L = \frac{ap}{\tan RMPX}$$

Conseils pour le fraisage hélicoïdal

Pour le fraisage hélicoïdal, utiliser entre le dia. de fraisage min. et le dia. de fraisage max.


Description	Dia. de coupe min.	Dia. de coupe max.
MEV06	2×DC-5	2×DC-2

Pour le fraisage hélicoïdal, utiliser entre le diamètre de coupe min. et le diamètre de coupe max.

Conserver une profondeur de plongée par rotation inférieure à la valeur ap max. (APMX) indiquée dans le tableau des dimensions de la fraise

Faire preuve de prudence afin d'éliminer les incidences causées par la production de copeaux longs

Fraisage incrémental

Description	Profondeur de coupe Pd maximale	Longueur de coupe min. x pour la face inférieure plate
MEV06	0,25	DC-3

Unité: mm

Unité: mm

Il est recommandé de réduire l'avance de 25 % par rapport aux recommandations jusqu'à ce que le noyau central soit retiré lors du chariotage après le perçage.

L'avance recommandée par tour est f < 0,1 mm/tr

En savoir plus sur les outils de fraisage de Kyocera

Fraisage 90° avec plaquette double face à 4 arêtes

Série MEW

- Plaquette économique à 4 arêtes
- Amélioration de la durée de vie du porte-plaquettes et de la précision d'installation de la plaquette
- Résistance au broutage garantissant un excellent état de surface

Revêtement DLC pour l'usinage de l'aluminium Ajout de la nuance PDL025 à la gamme

Plaquette reversible à 6 arêtes

MFWN

- Faible effort de coupe entraînant une coupe douce
- Résistance au broutage, même avec de longs porte-à-faux
- Durée de vie importante grâce au revêtement NANO MEGACOAT

Nuance de plaquette revêtue par DLC pour l'usinage de l'aluminium

Nouvelle nuance PDL025

